
Automatic Generation of 3D Networks in CityGML via MUSCLE
Model

Ismail Rakip Karas1, Alias Abdul-Rahman2, Umit Atila3

1Department of Computer Engineering, Karabuk University, Karabuk, Turkey
E-Mail: ismail.karas@karabuk.edu.tr

2Department of Geoinformatics, Universiti Teknologi Malaysia, Johor, Malaysia

E-Mail: alias@utm.my

3Directorate of Computer Center, Gazi University, Ankara, Turkey
E-Mail: umitatila@gmail.com

ABSTRACT

This paper describes the usage of MUSCLE (Multidirectional Scanning for Line Extraction)
Model for automatic generation of 3D networks in CityGML format (from raster floor plans).
The algorithm of the model implements line thinning and simple neighborhood methods for
vectorization. The model allows user to define specific criteria which are crucial for acquiring
the vectorization process. The network models are topologically structured in CityGML format.
A Java based software was developed for visualizing the network model generated and
converted in CityGML. After the generation process, it is possible to perform 3D network
analysis based on these models for evacuation purposes. We will highlight some future works.

Keywords: 3D GIS, Network Analyses, Geo-database, Topology

1 . INTRODUCTION

When we consider 3D navigation systems we may need to solve complex topologies, 3D
modelling, topological network analysis and so on. For realizing all these processes we need 3D
spatial data.

Data collection used to be the major task which consumed over 60% of the available resources
since geographic data were very scarce in the early days of GIS technology. In most recent GIS
projects, data collection is still very time consuming and expensive task; however, it currently
consumes about 15- 50% of the available resources (Longley et al. 2001).

Data generation is also still a problem for the researchers who work on GIS based 3D
navigation systems which consumes their time more than achieving their applications or doing
their researches. Pu and Zlatanova (Pu and Zlatanova 2005) have pointed out that automatically
extracting geometry and logic models of a building is difficult and the nodes and links have to
be created manually or half-manually.

Most of geographical information systems work with raster images data such as scanned maps
and engineering drawings in CAD format. In order to manipulate, for example transform or
select the lines and the other features from such raster images, these features must be extracted
through a vectorization process (Nieuwenhuizen et al. 1994).

Line is one of the most fundamental elements in graphical information systems. Line detection
is a common and essential task in many applications such as automatic navigation, military
surveillance, and electronic circuits industry (Shpilman and Brailovsky 1999; Climer and Bhatia
2003).

In previous studies, there are a large number of algorithms developed for detecting lines from
raster images (Miao et al. 2002; Lagunovsky and Ablameyko 1999; Madhvanath et al. 1999;
Hori and Tanigawa 1993) that use traditional vectorization processes like line following-chain
coding and vector reduction stages.

In this paper, the automated 3D network generation of buildings from raster plans by using
MUSCLE Model (Multidirectional Scanning for Line Extraction) is described. Unlike
traditional vectorization process that use line following-chain coding and vector reduction
stages, the algorithm of the model generates straight lines based on line thinning and simple
neighborhood techniques.

Once the network generation process completed, the data is converted into CityGML format in
LOD0 (Level of Detail) by using some convertion methods. The results indicate that the
MUSCLE model can be eligibly used to generate 3D topological network models of buildings.

2 . THE MUSCLE MODEL

MUSCLE Model is a conversion method which was developed to vectorize the straight lines
through the raster images including township plans, maps for GIS, architectural drawings, and
machine plans. Unlike traditional vectorization process, this model generates straight lines
based on a line thinning algorithm, without performing line following-chain coding and vector
reduction stages. By using this model, it is also possible to generate 3D Building models based
on the floor plan of the building (Karas et al. 2008).

The model can be described in 4 main stages:

1. Threshold processing
2. Horizontal and vertical scanning of the binary image
3. Detecting wrongly vectorized lines
4. Correcting wrongly vectorized lines by using diagonal scanning

Process of MUSCLE Model is described in Figure 1.

Figure 1: MUSCLE model process

3. GENERATING 3D NETWORK MODEL

By using the MUSCLE Model as briefly described in Figure 1, the 3D Building and
Topological Network model of a building can be generated automatically from raster floor
plans. The user interface of 3D Model Generation Software is shown in Figure 2.

Figure 2: 3D Model Generation User Interface

3.1 Generating Corridors

In NM, corridor is the main backbone in the floor plan since it connects the rooms with all the
other entities in the building. Therefore, determining and modeling the corridor is very
important. Once corridor was provided by the user, algorithm leaves only the corridor in the
image, and then, determines the middle lines based on the method described in the previous
section. After number of processes on selected middle lines, topological model and coordinates
of the corridor are found as seen in Figure 3.

Figure 3: Generating Corridors

3.2 Generating the Rooms

In determining the rooms, corridor is excluded from the image and only the rooms are left.
Then, by applying the method, middle point of the rooms are determined and defined as the
nodes which represent the rooms Figure 4.

Figure 4: Generating Rooms

3.3 Integrating Corridors with Rooms

After locating the nodes that indicates corridor and rooms, user interactively points out which
room nodes connect with which corridor nodes, and geometric network for 2D floor plan is
generated (Figure 5a).

After stairs (or elevator) nodes are indicated by a user, the network is automatically designed by
assigning different elevation values for each floor based on various data such as floor number
and floor height, and then, 3D NM is generated as seen in Figure 5b.

(a) (b)

Figure 5: Generating Network Model

4 . CONVERTING NETWORK MODEL into CityGML FORMAT

4.1. CityGML

CityGML is an open data model and XML-based format for the storage and exchange of virtual
3D city models. It is an application schema for the Geography Markup Language version 3.1.1
(GML3), the extendible interna-tional standard for spatial data exchange issued by the Open
Geospatial Consortium (OGC) and the ISO TC211 (Gröger et al. 2008).

The aim of the development of CityGML is to reach a common definition of the basic entities,
attributes, and relations of a 3D city model. This is especially important with respect to the cost-
effective sustainable mainte-nance of 3D city models, allowing the reuse of the same data in
different application fields. CityGML not only represents the graphical appearance of city
models but specifically addresses the representa-tion of the semantic and thematic properties,
taxonomies and aggregations (Gröger et al. 2008).

CityGML includes a geometry model and a thematic model. The geometry model allows for the
consistent and homogeneous definition of geometrical and topological properties of spatial
objects within 3D city models. The base class of all objects is CityObject which is a subclass of
the GML class Feature. All objects inherit the properties from CityObject (Gröger et al. 2008).

CityGML supports different Levels of Detail (LOD). LODs are required to reflect independent
data collection processes with differing application requirements (Figure 6). The coarsest level
LOD0 is essentially a two and a half dimensional Digital Terrain Model, over which an aerial
image or a map may be draped. LOD1 is the well-known blocks model comprising prismatic
buildings with flat roofs. In contrast, a building in LOD2 has differentiated roof structures and
thematically differentiated surfaces. Vegetation objects may also be represented. LOD3 denotes
architectural models with detailed wall and roof structures, balconies, bays and projections.
High-resolution textures can be mapped onto these structures. In addition, detailed vegetation
and transportation objects are components of a LOD3 model. LOD4 completes a LOD3 model

by adding interior structures for 3D objects. For example, buildings are composed of rooms,
interior doors, stairs, and furniture(Gröger et al. 2008).

Figure 6: The five levels of detail (LOD) defined by CityGML

3D Network Model is represented using Transportation Module of CityGML. The
transportation model of CityGML is a multi-functional, multi-scale model focusing on thematic
and func-tional as well as on geometrical/topological aspects. Transportation features are
represented as a linear network in LOD0. Starting from LOD1, all transportation features are
geometrically described by 3D surfaces. The main class is transportationComplex, which
represents, for example, a road, a track, a railway, or a square. Representation of a
TransportationComplex for LOD0 is illustrated in Figure 7 (Gröger et al. 2008).

Figure 7: TransportationComplex in LOD0 (Example shows part of a Motorway)

4.2. Visualization of Network Model from CityGML

Once the network generation process completed, the data is converted into CityGML format in
LOD0 (Level of Detail) by using some convertion methods. The whole data generation process
is described in a flow chart showed in Figure 8.

Figure 8: Data Generation Process

3D Network Model is represented as a linear network using Transportation Module of
CityGML. Network model in CityGML format is shown in Figure 9.

Figure 9: Network model represented in LOD-0 linear network in CityGML

For visualizing the network model in CityGML, a java based application was developed. The
application uses citygml4j Java class library and API for facilitating work with the CityGML.
Application uses JOGL Java bindings for OPENGL to carry out visualization (Figure 10).

Figure 10: Visualization of Network Model from CityGML

CONCLUSIONS

In this study, usage of MUSCLE Model (Multidirectional Scanning for Line Extraction) was
described for automatic generation of 3D topological networks in CityGML format from raster
image format of floor plans. The algorithm of the model generates the line thinning and the
simple neighborhood techniques for vectorization processes. Unlike traditional vectorization
process, this model generates straight lines based on a line thinning algorithm, without
performing line following-chain coding and vector reduction stages. The results indicate that the
model may successfully be used to generate the network models of the buildings and convert
them into CityGML. We plan to highlight some future work on 3D network analysis of
generated models.

REFERENCES

1. Climer, S., Bhatia, S. K., 2003. Local Lines: A linear time line detector. Pattern
Recognition Letters, 24, 2291–2300.

2. Gröger, G., Kolbe, T.H., Czerwinski, A., Nagel, C., 2008. OpenGIS City Geography
Markup Language (CityGML) Encoding Standard, Version 1.0.0, International OGC
Standard. Open Geospatial Consortium.

3. Hori, O., Tanigawa, S., 1993. Raster-to-vector Conversion by Line Fitting Based on
Contours and Skeletons. In: Proceedings of Int. Conf. Document Analysis and
Recognition, Tsukuba (Japan): 353-358.

4. Karas, I. R., Bayram, B, Batuk, F., Akay, A., Baz, I, 2008. Multidirectional Scanning
Model, MUSCLE, to Vectorize Raster Images with Straight Lines. Sensors, ISSN:
14248220, Volume: 8, Issue: 4, 2673-2694.

5. Lagunovsky, D., Ablameyko, S., 1999. Straight-line-based primitive extraction in grey-
scale object Recognition. Pattern Recognition Letters, 20(10), 1005-1014.

6. Longley, P.A., Goodchild, M.F., Maguire, D.J. and Rhind, D.W., 2001. GIS Data
Collection, Geographic Information Systems and Science, Hoboken, NJ: John Wiley &
Sons: 203-224.

7. Madhvanath, S., Kim, G., Govindaraju, V., 1999. Chaincode Contour Processing for
Handwritten Word Recognition. IEEE Transactions On Pattern Analysis And Machine
Intelligence, 21(9), 928-932.

8. Miao, L., Liu, X., Peng, Q., Bao, H., 2002. BRDC: binary representation of
displacement code for line. Computers & Graphics, 26(3), 401–408.

9. Nieuwenhuizen, P.R., Kiewiet, O., Bronsvoort, W.F., 1994. An Integrated Line
Tracking and Vectorization Algorithm. Eurographics'94, 3(3), 349-359.

10. Pu S. and Zlatanova S., 2005, Evacuation route calculation of inner buildings, In: PJM
van Oosterom, S Zlatanova & EM Fendel (Eds.), Geo-information for disaster
management, Springer Verlag, Heidelberg: 1143-1161.

11. Shpilman, R., Brailovsky, V., 1999. Fast and robust techniques for detecting straight
line segments using local models. Pattern Recognition Letters, 20(9), 865-877.

