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Abstract. Building information modeling BIM relaying on plenty of geospatial 

information such as building footprints. Collecting and updating BIM infor-

mation are real challenge. Building footprints were automatically extracted 

from high resolution satellite images utilizing machine learning algorithms. 

Constructing required training datasets for machine learning algorithms and 

testing data is computationally intensive. When the analysis performs in large 

geographic areas researcher struggling from out of memory problems. The re-

quirement of developing improved, less expensive methods for accomplishing 

this computation is urgent.  This paper targeting to handling massive data size 

issue in building footprints extraction from high resolution satellite images. 

This article developed a method to process the spatial raster data based on the 

chunks computing. Chunk-based decomposition raster array to several tiny cu-

bes. Cubes supposed to be small enough to fit into available memory and pre-

vent memory overflow. The algorithm of method developed using Python pro-

gramming language. Spatial data and developed tool were prepared and pro-

cessed in ArcGIS software. Matlab software utilized for machine learning. Neu-

ral networks implemented for extracting building footprints from satellite imag-

es with 99.3% performance accuracy for testing dataset. To demonstrate the 

performance of our approach, satellite image having (1409 columns, 1346 rows, 

cell size 0.61 meter, area 0.7056928594 km2, 7586056 pixels in 4 bands) feed 

to the tool. The image impossible to be totally handle in central processing unit 

CPU. The image divided to 36 chunks using 250 * 250 rows and columns. Full 

analysis spent 1 hour. Selecting the chunks size is critical issue, if the chunks 

size selects not properly, the chunks process will be useless. The employed 

method shows that chunk computing can solve the memory overflow in person-

al computers when processing large files. Consequences demonstration that im-

age smoothly processed, migrated and building footprints extracted effetely, 

avoiding memory overflow. The lessons learned from the tests are summarized. 

Furthermore, future research should include global and focal raster computation 

beside local raster operations. 
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1 Introduction 

Building Information Modelling (BIM) is a digital representation of physical and 

functional attribute of buildings [1]. A BIM is a mutual knowledge resource for data 

about a buildings establishing a reliable foundation for decisions during its life-cycle 

[2–4]. A BIM is an intelligent 3D model-based process that gives engineering, archi-

tecture, and construction professionals the insight and tools to more efficiently plan, 

design, construct, and manage buildings and infrastructure [4].  

Apparently, key stage in BIM system is collecting and storing digital information 

of every aspect of the existing buildings. Digital information about the buildings help 

decision makers to optimize their actions. Optimized actions can be affected from the 

design until construction and managing stage during buildings life-cycle [5]. In addi-

tion, updating the information issue is a challenging process in BIM system. Updating 

the information is time consuming, financially costly and time challenging. High reso-

lution satellite images (HRSI) became a great solution for collecting and updating 

BIM spatial data. Application areas of HRSI have been substantially increased due 

to availability of sub-meter spatial high-resolution of satellite images such as, 

QUICKBIRD, WorldView and IKONOS [6–8]. By processing HRSI, several in-

formation can be extracted automatically such as detect the buildings, buildings high-

est, buildings footprint and roof type using machine learning algorithms. Building 

footprint is the area on a project site that is used by the building structure and is de-

fined by the perimeter of the building plan. Parking lots, landscapes, and other non-

building facilities are not included in the building footprints [9–11]. In the past two 

decades, building detection and reconstruction from remotely sensed data has been an 

active research topic in the photogrammetric and remote sensing communities 

[12,13]. 

Automatic extraction of building footprints from HRSI has been varied difficulties 

[14]. One of the main challenges is handling massive data size issue in HRSI. Issue 

arising from the truth that machine learning algorithms need specific data structure to 

apply the analysis. This data structure of machine learning algorithms is an input and 

target sets. Input data set consisting the parameters of each sample. The samples in 

building footprint extraction application area represent the pixel, while parameters 

represent the bands of the satellite images. So, the process to reshaping the raster 

spatial data to be suitable for machine learning algorithms data structure is time con-

suming. In addition, reshaping the spatial data and establishing the data set required 

massive random memory, especially if the geographical area is big, and analysis area 

have giant number of rows and columns due to HRSI.  In addition, the increase in 

resolution of raster datasets has led to larger and larger data sizes [15]. Presently, 

datasets are on the order of gigabytes and increasing, with billions of raster cells. 

While computing power of the processors and size of the memory in computers have 

increased appreciably, legacy equipment and algorithms suited to manipulating small 

rasters with coarser resolution make processing these improved data sources costly.  

Massive data size issue caused plenty of problems for the specialists such as out of 

core computation or out of memory [16]. HRSI need huge memory to process and 

store them. This problem totally stopes the specialists from performing the analysis or 
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limited their analysis only in tiny geographical areas. In some cases, massive data size 

issue lead to crash the systems especially if they are using only serial processing or 

sequential processing in classical personal computers PC’s. 

However, massive data size issue need to manage the memory carefully to avoid 

any crash during the Geo-processing [17]. Several methods were proposed in the past 

to handle this issue such as parallel processing, multitasking, distributed systems, 

supercomputing, cloud computing and graphics processing unit (GPU). But some 

these methods are not suitable for machine learning algorithms. In case of working 

with some environments such as ArcGIS, methods are available for the built in func-

tions, while it is not available for the developed functions or other processing envi-

ronments. Additionally, in case of the need to migrate the data to other environments 

for instance Matlab software, these methods are not available. In some cases, the main 

problem is not how long the processing is taking time, but the problem that the system 

is crash or stop the processing. The system stops the processing due to that the size of 

data need random memory more than the available memory in the device. 

Thus, the main aim of this article is to handling massive data size issue in building 

footprint extraction from HRSI. This paper developed a method to process the spatial 

raster data based on the chunks computing for sequential processing. Then, the devel-

oped method implemented and tested based on cased study data. HRSI with massive 

data size were processed using this tool. The tool developed using Python programing 

language. While the machine learning algorithm implemented using Matlab software. 

HRSI were processed in ArcGIS.  

2 Methods 

The developed method designed using Python programing language. The cod consid-

ered that spatial raster data will be processes in ArcGIS and Matlab. Previously, HRSI 

were completely loaded to the computer, which faced the out of memory problem 

[18]. The developed method relay on dividing raster array to several tiny cubes, which 

called chunks (Fig.  1 (A)) [17]. Cubes supposed to be small enough to fit into availa-

ble memory. Once the data is decomposed appropriately, each data ‘chunk’ can be 

operated on independently on by a process. At this stage, raster data are loaded into 

the memory and computation performed based on sequential processing cubes-by-

cubes. Thus, reducing the memory usage during the Geo-computation and avoiding 

the crashing of the analysis.  

Small cubes data structure is very suitable for machine learning algorithms data 

structure. First dimension of the cube represents the number of columns, second di-

mension represent numbers of rows and third dimension represent the band of satellite 

image. Since the HRSI is multispectral images and having limited number of bands 

(between 3 to 12), the method dividing only the first dimension and storing full third 

dimension.  Cubes of raster data can easily reshape to the suitable and required ma-

chine learning datasets. Every cube will represent one separated dataset and will be 

migrated to Matlab and be tested individually. By this process, the model shortens the 

image processes through reading the pixel values directly from raster structure. Previ-
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ously, models were convert the raster data to tabular data based on sampling strategy. 

Sampling strategy is convert the raster to points and extract the pixel values and store 

it in the linked attribute data with the grid of points. Then, migrate these data to ma-

chine learning software. This previous process is highly time consuming compared 

with the developed method. Instead of reading points, this method read a small piece 

from the image, make some calculations, write the output on the disk, and release the 

memory before repeating the process with the next piece. 

 

 
                (A)                                                                   (B) 

Fig.  1. (A) HRSI 3D array divided to chunks. Figure showing how storing a three 

dimensional chunked storage structure. the chunk size is (longitude) x (latitude) x 

(band).  (B) Developed tool in ArcToolbox using Python for chunk processing. 

In addition, chunks data structure is suitable for parallel computing and easily to be 

configured. Furthermore, the analyzer of HRSI can know and control number of 

chunks based on their available memory and devises. This method is simple and more 

acceptable for remote sensing society. The method code developed to be suitable for 

ArcGIS-Arc toolbox environment. One toolbox developed to apply the method to 

raster data. The tool illustrated in (Fig.  1 (B)). The first input of the tool is the 

HRSI’s. the user need to added the images band by band. The input design to be raster 

layer, which accept bands from table of content or from the hard drive directly with-

out the need to add the data to table of content. Adding the data to table of content is 

memory consuming. Second input is chunk size. Third input is the output workspace 

for the TXT datasets. Finally, forth input/output is the location of each chunk metada-

ta. Metadata file help to stitched back chunks together via mosaicking it to one mean-

ingful output image. 

Chunks size parameter must be defining carefully. defining chunks size is based on 

the experiments. If chunks size is too small, queueing up operations will be extremely 

slow, because each chunk has storage cost. Conversely, if chunks size is too big, ben-

efits of chunks computation may be wasted, because chunk array will not fit into the 

available memory. Thus, selecting suitable chunks size will avoid any risk for the 

system. 
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In order to well describe the developed method, code of the method is described as 

following; 
# importing the required Python libraries  

import arcpy 

import numpy as np 

import os 

# Reading the input raster 

inputRasters = arcpy.GetParameterAsText(0) 

#defining size of chunk  

chunkssize= arcpy.GetParameterAsText(1) 

#defining out the Workspace 

OutputMetaData = arcpy.GetParameterAsText(2) 

Output= arcpy.GetParameterAsText(3) 

# Loop over raster data chunks 

for x in range(0, inputRasters.width, chunkssize):        # Loop over image columns  

    for y in range(0, inputRasters.height, chunkssize):   # Loop over image rows 

        for in_raster in inputRasters:        # Loop over input bands  

            IR = arcpy.Raster(in_raster)        # Reading the input raster  

            # Getting chunk dimensions  

            mx = IR.extent.XMin + x * IR.meanCellWidth  # defining minim X coordinate 

            my = IR.extent.YMin + y * IR.meanCellHeight # defining minim Y coordinate 

            lx = min([x + chunkssize, IR.width])         # defining maximum X coordinate 

            ly = min([y + chunkssize, IR.height])         # defining maximum Y coordinate 

            # Extract chunk data 

            Chunk = arcpy.RasterToNumPyArray(IR, arcpy.Point(mx, my), lx-x, ly-y) 

            V = np.ravel(Chunk) 

            RL1.append(V) 

            NewNpArray = np.array(RL1)  

    RL = np.transpose(NewNpArray) 

        raster += 1 

        BlockChank = os.path.basename(in_raster) 

        BlockChank2 = str(BlockChank) + "_" + str(raster) 

        Output3 = str(Output) + str(BlockChank2) + ".txt" 

        np.savetxt(Output3, RL, delimiter=" ", fmt="%s") # Storing the dataset of chunk 

        Arrayshape = Chunk.shape 

        COLUC = Arrayshape[0] 

        ROWC = Arrayshape[1] 

        MCW = IR.meanCellWidth 

        MCH = IR.meanCellHeight 

        Meta = str(MCW) + " " + str(MCH) + " " + str(mx) + " " + str(my) + " " + str(ROWC)     

                 + " " + str(COLUC) 

        MetaData.append(Meta) 

np.savetxt(OutputMetaData, MetaData, delimiter=" ", fmt="%s") # Storing the Metadata  

 

The developed method and tool employed through a case study data. HRSI obtained 

and implemented (Fig.  2).  The obtained satellite image is high resolution image. The 

image consisting 1409 columns, and 1346 rows. The cell size of the image is (0.61 

meter, 0.61 meter). Total area of case study is 0.7056928594 km2. The image with 

1896514 pixels in one band and 7586056 pixels in 4 bands is impossible to be totally 

handle in central processing unit (CPU). This image need advanced processor and big 

memory to be completely processed by one set. In a case the analyzer need to perform 
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augmentation process and increase the number of input images, the difficulties and 

problem will be increased. 

 
Fig.  2. HRSI as case study for building footprints extraction using chunks pro-

cessing. The image consisting 7586056 pixels in 4 bands. 

By reading the corresponding numbers of rows, columns and bands of the image, 250 

columns and 250 rows were defined as the chunks size. That’s mean that every chunk 

dataset consisting 62500 pixels. The script converts a multiband raster to a three-

dimensional NumPy array. The array automatically divided to data chunks. Then TXT 

datasets files were stored and migrated to Matlab software. The TXT format make 

analysis flexible to be implement in different software’s. In Matlab, datasets were 

trained and tested through neural network [16,19–29]. Neural networks are a collec-

tion of functions, trying to simulate the biological cell work of human, which devel-

oped for patterns recognition. The impression of Neural networks is according to the 

belief that working of human brain, by making the right connections, can be copied 

using silicon and wires as living neurons and dendrites [30]. 

The human brain is consisting of 86 billion nerve cells called neurons. Neurons are 

associated to further thousand cells by Axons. Stimuli from external environment or 

inputs from sensory organs are accepted by dendrites. Neurons inputs generate elec-

tric impulses, which rapidly moved over the neural network. The neuron can take 

input data and execute simple operations on the data. The outcome of these processes 

is passed to other neurons. The output at each neuron is called its activation or node 

value. Each connection is linked with weight. Neural networks are able to training, 

which takes place by altering weight values.  Neural networks can understand sensory 

data through a kind of machine perception, clustering or labeling raw input. The rec-

ognized patterns are numerical, stored in vectors as parameters. Most of application 
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areas their data need to be reshaped to the suitable data structure such as sound, imag-

es, text and time series data. Neural network applied for building footprint extraction 

from HRSI. Neural networks applied in Matlab software. Backpropagation neural 

network utilized. Sample points of training data set was consisting 392 points. an 

example extract from the case study data illustrated in Table 1. The table show the 

explanatory parameters data and their target values. Data set of training stage extract 

based on point processing, due to the storage size is limited. Neural network used 4 

input bands for the input layer and utilized 33 neurons in the first hidden layer. The 

network reach to the optimal performance after 67 iterations if training. 

Extraction process of building footprints implemented based on chunks datasets 

one by one. The outputs of neural network were stored and migrated to ArcGIS again. 

Outputs of neural networks of every chunk were converts to raster, and recombines 

the image via mosaicking. Thus, single band classified image of building footprints 

were produced. 

Table 1 Example part of training dataset of sample points 

Input (explanatory parameters) Target  

(building footprints) Band 1 Band 2 Band 3 Band 4 

1020 1640 1266 1252 1 

993 1622 1266 1271 1 

479 790 670 747 0 

1053 1721 1339 1344 1 

1170 1791 1352 1235 1 

503 857 765 824 0 

416 618 479 504 0 

1221 1933 1476 1380 1 

456 723 587 635 0 

3 Result 

Data of case study successfully tested using the developed method and tools. In this 

analysis, the tool divided the study area to 36 chunks based on (250 * 250 pixels). 

Average storage size of chunks files is 1 MB, which easily can be processed by any 

CPU. Full analysis spent 1 hour. The tool directly divided the image, read pixel values 

and reshaped every chunk array. Then arrays stored in TXT files and migrated to 

Matlab. In Matlab software, chunks arrays were tested one by one through looping 

over the files. Testing processed were applied to automatically extract building foot-

print from HRSI. Extraction process implemented using neural networks as machine 

learning algorithm. NN highly recommended for satellite image processing. 

After training the model, high testing accuracy achieved based on the sample dataset. 

Confusion matrix utilized as accuracy evaluation metric. Final achieved performance 
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accuracy was 99.3%. The full image was smoothly processed through looping over 

the 36 chunks. Then, chunks data effectively moved to ArcGIS and recombine in one 

full image. The image of case study processed without facing the out of memory 

problem. This full image represents the extracted building footprint from the high 

resolution satellite images. Extracted building footprint were illustrated in (Fig.  3). 

The advantages of optimizing raster analysis tasks with Python chunks are evident 

from this figure.  

In the last part, the most important thing was to get memory usage reduced. In this 

case study, method tried to developed a suitable tool to solve memory usage problem 

due to huge data stuck. So, code implemented for handling massive data size issue in 

satellite image. The method was effectively implemented in the application area of 

building footprints extraction [31–33], and highly recommended for further applica-

tion. 

 
Fig.  3. Output of the neural network model based on chunk processing. The map 

illustrating the extracted building footprint from the high resolution satellite images 

4 Conclusion 

Automatically extraction of building footprints from high resolution satellite images utilizing 

machine learning algorithms is computationally intensive than regular raster Geo processing.  

Working with full images for big geographic area is challenging in central processing unit, and 

facing out of memory problems. In addition, the cost of migrating big data and repeating the 

processing to gain up to date information. Building training and testing datasets for machine 

learning algorithms required high memory usage. Highly usage of memory lead to stop the 

analysis or even to crash the analysis systems. Thus, the need of developing a methodology to 
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solve high memory usage in spatial data is essential. developed a method to process the spatial 

raster data based on the chunks computing for sequential processing 

This article aims to established a method to process the spatial raster data based on the 

chunks computing. Chunk computing breakdown raster array to several tiny cubes. Cubes must 

be small enough to fit into offered memory and prevent memory crash. Instead of reading and 

processing full high resolution satellite image, this method read a small portion from the image, 

apply some Geo computation, write the output on the disk, and release the memory before 

repeating the process with the next portion. The method function established using Python 

programming language. Spatial information and established toolbox processed and prepared in 

ArcGIS environment. Matlab environment used for machine learning. Neural networks execut-

ed for extracting building footprints from high resolution satellite images with 99.3% perfor-

mance accuracy for testing dataset. Confusion matrix applied as accuracy evaluation metric. To 

validate the performance of proposed method, massive satellite image having (1409 columns, 

1346 rows, cell size 0.61 meter, area 0.7056928594 km2, 7586056 pixels in 4 bands) feed to 

the toolbox. In the normal situation, the image is impossible to be totally handle in central 

processing unit CPU. Image separated to 36 chunks. Every chunk is (250 * 250) consisting 

62500 pixels. All the analysis spent 1 hour for processing. Selecting the chunks size is 

critical issue, if the chunks size selects not properly, the chunks process will be useless. Out-

comes proved that high resolution satellite images can be smoothly processed, migrated, build-

ing footprints extracted effetely, and avoiding out of memory problem.  The employed method 

shows that Chunk computing can solve the memory overflow in personal computers when 

processing large files. The developed method is suitable to be implement in an affordable 

lightweight desktop environment, rather than, needing high computing capability that recom-

mended previously. Future work can be including an expanding to this research to support 

several and further processing functions beside the building footprints extractions. In addition, 

increase the functionality of the method to automatically calculate the optimal chunk size based 

on different computing power. Additionally, future works should include global and focal raster 

computation beside Local raster operations. 
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